Transcription by Methanothermobacter thermautotrophicus RNA polymerase in vitro releases archaeal transcription factor B but not TATA-box binding protein from the template DNA.
نویسندگان
چکیده
Transcription initiation in Archaea requires the assembly of a preinitiation complex containing the TATA- box binding protein (TBP), transcription factor B (TFB), and RNA polymerase (RNAP). The results reported establish the fate of Methanothermobacter thermautotrophicus TBP and TFB following transcription initiation by M. thermautotrophicus RNAP in vitro. TFB is released after initiation, during extension of the transcript from 4 to 24 nucleotides, but TBP remains bound to the template DNA. Regulation of archaeal transcription initiation by a repressor competition with TBP for TATA-box region binding must accommodate this observation.
منابع مشابه
Transcription by an archaeal RNA polymerase is slowed but not blocked by an archaeal nucleosome.
Archaeal RNA polymerases (RNAPs) are closely related to eukaryotic RNAPs, and in Euryarchaea, genomic DNA is wrapped and compacted by histones into archaeal nucleosomes. In eukaryotes, transcription of DNA bound into nucleosomes is facilitated by histone tail modifications and chromatin remodeling complexes, but archaeal histones do not have histone tails and archaeal genome sequences provide n...
متن کاملArchaeal minichromosome maintenance (MCM) helicase can unwind DNA bound by archaeal histones and transcription factors.
Protein-DNA complexes must be disassembled to facilitate DNA replication. Replication forks contain a helicase that unwinds the duplex DNA at the front of the fork. The minichromosome maintenance helicase from the archaeon Methanothermobacter thermautotrophicus required only ATP to unwind DNA bound into complexes by the M. thermautotrophicus archaeal histone HMtA2, transcription repressor TrpY,...
متن کاملEvents during initiation of archaeal transcription: open complex formation and DNA-protein interactions.
Transcription in Archaea is initiated by association of a TATA box binding protein (TBP) with a TATA box. This interaction is stabilized by the binding of the transcription factor IIB (TFIIB) orthologue TFB. We show here that the RNA polymerase of the archaeon Methanococcus, in contrast to polymerase II, does not require hydrolysis of the beta-gamma bond of ATP for initiation of transcription a...
متن کاملCloning and functional analysis of the TATA binding protein from Sulfolobus shibatae.
Archaea (formerly archaebacteria) comprise a domain of life that is phylogenetically distinct from both Eucarya and Bacteria. Here we report the cloning of a gene from the Archaeon Sulfolobus shibatae that encodes a protein with strong homology to the TATA binding protein (TBP) of eukaryotes. Sulfolobus shibatae TBP is, however, almost as diverged from other archaeal TBPs that have been cloned ...
متن کاملTATA-binding protein and transcription factor IIB induce transcript slipping during early transcription by RNA polymerase II.
To better understand the mechanism of steps in early transcription by RNA polymerase II (pol II), we investigated the molecular determinants of transcript slipping within complexes assembled on promoters containing a pre-melted transcription bubble from -9 to +3. Transcript slippage occurs when an RNA transcript contains a repetitive sequence that allows the transcript to slip back and pair wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 186 18 شماره
صفحات -
تاریخ انتشار 2004